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ABSTRACT

Let the points

(1) (xiYi, (i - 1,...,k, k > 2), a < x < x < s < xk < b

I = [a,b], (-< < a < b < 0)

be prescribed. Furthermore, let m and n be integers such that

1 n < k <m,

and define the polynomial class

Rl = (P(x); P(x) e WM, P(xi) Yi, (i =

Within 1 we determine Pm(X) as the solution of the extremum problem
m

(2) f (P(n)(x))2 dx = minimum for P(x) e Mm

I

Finally, let S(x) - S2ml(X) be the natural spline interpolant of degree

2n - 1 of the k points (1). Our main result is

Theorem 1. 1. There is a unique polynomial Po(x) which is the

solution of the minimum problem (2).

2. We have

lim Pm(x) = S(x) uniformly in x e I
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SIGNIFICANCE AND EXPLANATION

In the finite interval [a,b] we have prescribed abscissae

< x2 < ... < xk  and corresponding ordinates Y1,Y2,***y k* Let

Sxx) = S2k-1(x) be the natural spline of degree 2n - I that interpolates

chose k points. This requires that I < n < k. Furthermore, let m be an

integer such that m > k, and let Pm(x) be the polynomial of degree at

Laost m that interpolates the k points, and such as to minimize the

integral

-i~ (n)(x)2€,b

f (P~ Wx)dx
a

within the entire class of polynomials of degree m that interpolate the k

points. It is shown that as m. + the polynomial P.(x) converges to the

spline S(x)•
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INTERPOLATING SPLINES AS LIMITS OF POLYNOMIALS

I. 3. Schoenberg

For Alexander Ostrowski on his 90th birthday on September 25, 1983,

from one of his grateful students.

1. Introduction. Let the points

(1.1) (xi,yi), (i- 1,...,kl k > 2), a < x, < x2 < . < xk  b ,

I aeb], (-< a < b < m

be prescribed. The basic interpolant is the Lagrange interpolating

polynomial. If additional consecutive derivatives at the points (1-1) are

available, we can construct the Hermite interpolation polynomial. In the

absence of such additional data, we propose here the following construction:

Let m and n be integers such that

(1.2) 1 < n < k < m,

and let us consider the polynomial class

(1.3) H - tP(x), P(x) e % , P(x) -Yi, (i 1,.,k)

Within this class we determine the polynomial Pm(x) which is Omost nearly a

polynomial of degree at most n - 1 in the interval I." We interpret this

requirement to mean the Pm (x) is the solution of the extremum problem

(1.4) f (P(n) (x)) 2dx - minimum for P(x) e U•
I

Equivalently: Writing

(1.5) 1 nm - inf f (P(n) x))2dx
Pe I
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the polynomial Pm(x) is uniquely defined by

(.)f (p.(n)(x)) 2dx _ Mn. p,(x) e 6
I

Of course, the existence and uniqueness of Pm(x) is yet to be established.

Our main subject is the behavior of P,5(x) as m +-. The statement of

our result (Theorem 1 below) requires some known properties of natural spline

* interpolation. We describe its definition and the three properties that we

* need.

I. Let n be an integer such that

(1.7) 1 < n 4Ck

and let S(x) S 2n-I (x) denote a function satisfying the following fouar

.1 conditions:

Is 1 0 W( 6 C 2n-2 (a)

20 S(x) 6 i 2n*-I in each interval (xjixj+,), (j 1,.es,k -1),

30 S(x) 6 v Wi in (--.,x I)* and S(x) e -w n- i x'-

40 s(xi) - yi (i - ,...,k)

Then 5(x) is uniquely defined by the conditions 10 to 40.

The function SWx is called the natural spline interpolant of the

points (1.1) of degree 2n - 1.

I1. If f(x) e C n-l(1) is such that

(1.8) f(xi) - Ci i m 1,...,*k)

(1.9) f (n 1~()W is absolutely continuous, f (n)(x) e L (I)

then

with the equality sign only if f(x) - SWx in I.
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III. If f(x) e Cn-1(I) satisfies (1.8) and (1.9), then

(1.11) f (f(ln))2dx _ (Slnl)2dx - f (f(n) - sln)l2dx o
I I I

(See for instance [1, 110-116]).

Our main result is

Theorem 1. 1. There is a unique polynomial P(x) satisfying (1.6),

where Mn,m is defined by (1.5).

2. We have

(1.12) lir Pr(x) = S(x) uniformly in x e I

In view of the extremum property II of S(x), the limit relation (1.12)

may not seem surprising. Even so it is no immediate consequence and our proof

of Theorem 1 occupies the remaining three sections of this note.

2. The existence and uniqueness of PW(x). 1. Without loss of
4M

generality we may restrict the search for P (x) to the subclass IT* C 11 of
m 0 mm

polynomials P(x) = arxr/rl satisfying

0

(2.1) f (P(n)l (x)) 2 H ,n + 1 ,
I

where

m
(2.2) Pln)(x) I a rxr-n/(r - nil

r-n

Let X (x), (i - 0,1,...) be the orthonormal polynomials for the interval I,

and let

I-3-



(n) %-n
(2.3) Cx) I . ciXl(x)

0

rn-a

andP1' th we lud tht 2 2From (2.1) and Parseval's theorem we conclude that C n,m + 1 - K,
0

and hence that Icil _ K, (i - 0,...,o - n). From (2.3) it follows that the

ooeffiieents

(2.4) , are bounded

Because n < k we have that P(xi) Y, for i = 1,...,n. Solving this

system for the unknowns %,...,a. 1, in terms of the coefficients (2.4), we

conclude that for an appropriate eonstant I we have

jIl1 <_N, Ci = 0,...,.)

Now familiar compactness arguments will insure the existence of Pro(x)

satisfying (1.6) and (1.5).

2. Let pO (x) and pl(x) be two polynomials in IM such that

(2.5) f (p (n))2& " f (1"n) 2 " - .m

I i

Ividkatly also

(2.6) Ptlx) 0 I1 - t)p 0 lx) + tpllx) , 0 < t < 1)

and

(2.7) (t) f-1- t)(nlx) + tp(n)(x)) _ M,
T

is a quadratic polynemial in t which is seen to satisfy the equations

(2.8) '(O) - 0, 01) - 0

Moreover, by (2.7)
(2.9) V(t)- t2 f (p(n) - (n),2dt + A + B.

Let us show that the inequality

-4-
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f cp- - d.

is impossible. Indeed, it would imply by (2.8) and (2.9), that 0(t 0 ) ( 0

- for some to with 0 < t o < 1. But then, by (2.7), we would have

f l(n))dx < %,,, contradicting the definition of Mn,m as the minimum.

We must therefore have

f (p4 n -Pn)dx 0 o hence (n _(n 2()X) (np)(x)I

But then pl(x) - p0 (x) + R(x), where R(x) e w n Since R(x i ) - 0 for
n-i I ~ i

i - 1,...,k, and k exceeds the degree n - 1 of R(x), we conclude that

R(x) = 0 and therefore p0 (x) - pI(x).

3. Proof that P(n)(x) +s n(x, as m + 2 in the L -norm. Let us show

that

(3.1) lir f Ip(n)(X) - S(n)Cx)I 2 dx = 0
a+- I

From the Property III, in particular (1.11) applied to f(x) - Pm(x), we

obtain

(3.2) f (P(") Cx)) 2 - f (S n)cx)) 2 dx = f (P")(x) -S (n)cx)) 2 dx
-I I I

The definition (1.5) of

(3.3) ,mn " f ( n ) (x)) 2 dx

as a mtni'um, and (3.2), show that
(pC) ) _Cm n)() S() 2d

(3.4) W (n(x) - s(nl(xll 2 dx - min f (plnlx) - sncx) dx
I peni Im

Clearly, the class R expands on increasing ml this shows that t,, isa M -S
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non-increasing for increasing mn, and by (3.2) also the right side of (3.2)

form a non-increasing sequence. This insures the existence of the non-

negative limit

(3.5)~ un ( p(n) _ (n))2d -

Apofof (3.1) is now equivalent to showing that

(3.6) L -0

This requires two lemmas from Approximation Theory, the first of which is

well known as an easy consequence of Weieratrass' theorem.

Lemma 1. Given r-> 0 ye can find a polynomial P*(x) such that

(3.7) IS(x) - P*(x) I ( e and IS n(x) -P*n() in I A

Indeed, if in the relation

n-1 (r fx ( ~- n
S(x) S sr(a)(x - a)r/rl + -1 f x-t)nS(n S (t)dt

We approximate to S (n) (t) closely by a polynomial p(t), then the

polynomial

n-i x

Al P(x) = S(r)(a)(x -a)r,/rl + (n-11f (x - )n-lp(t)dt
0a

will also approximate closely to S(x). Since P C)t) -p(t), the lemma

follows.

Lemma 2. Given 6 >0, we can find an m >k, and a P(x) e 1i, such
- Ru -

that

(3.8) Is (n)(x - P(n)(x)l < 6 for x e I

Notice that P(x) e 11 requires that P(xi) - y.This we derive from
in

Lemma 1 by Lagrange interpolation as follows. Let P*(x) be the polynomial
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.1

of Lemma 1 satisfying (3.7), and let

(3.9) m - max(k, degree of P.)

hence P.(x) e w and m > k. From 8(xi) " Yi and the first inequality

(3.7) we have

(3.10) IP.(x i) - yiI < , (i ,.

Let Q(x) e k-1 be such that

(3.11) Q(xi) - P*(xi) - Yi' (i -

Finally, we define

(3.12) P(x) = P*(x) - Q(x)

Notice that S (n ) x) - P(n) (x) - S(n)(x) - pn)(x) + Qln"(x) and therefore

(3.13) IS(n)lx) -plnl(x), < Isln)(x) -P(n)(x)l + IQ(n)(x)I (xe 1)

At this point observe that by (3.11) we have by Lagrange's formula

k
II

Q(x) = ixllP*lXil yi)

and therefore also the inequality

(3.14) IQ (n) lx)I < K maxjP (x) - I where K. max (n)(x)I
i xi

By (3.7), (3.13), and (3.14), we conclude that

(3.15) ,S(n)(x) - p(n)(x)l I (1 + K )c

Clearly, Plx) satisfies (3.8) if we choose c = 6/1 + K )

The P(x) defined by (3.12) satisfies all conditions required by Lemma

2: P(x) e r by (3.12). Also P(x) e 1, because by (3.11)

P(x1 ) = P*(xi) - Q(x1 ) = P*(xi) - P*(xi) + y- yi. This completes a proof of

Lemma 2.

4
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A proof of (3.6) follows at once, because by (3.4) we have

0 < L < f (p(n) - S(n)) 2 dx < f (pn) s(n)) 2 dx < 52(b _ a)mI I

where 6 is arbitrarily small.

4. A roofof the limit relation (1.12). Newton's formula with divided

differences

S(x) = S(xl) + (x - xl)S(xlx 2) + ... + (x - x1 ) (x - XnI)S(xl,...#,xn)

+ (x - x 1) '0" (x - Xn)S(xl,**IxnX)

shows the following: If Q0 (x) e WI denotes the Lagrange interpolation
n-i

of S(x) at the points x1,...,x, then

(4.1) S(x) = Q 0(x) + (x - x1 ) "'' (x - Xn)S(Xl,.I.xnx)

This is possible because of (1.2), hence n < k.

Now we use the expression of divided differences in terms of B-splines:

If

(4.2) M(t) = M(tlxlx2, ...,X,X) (x e I)

is the B-spline of degree n - I based on the n + 1 knots x1,...,xn,x,

then
1 (n

V4(4.3) Slxl,...,Xn,xl ni I l) (tldt.

I

(See e.g. [1, p. 112]. In that paper B-splines are still called fundamental

splines.) Applying (4.1), (4.2), and (4.3) to S(x), as well as Pm(x), and

subtracting one equation from the other, we obtain that

1
(4.4) Pmlx) - S(x) - - I I (x - x)l f M(t)(p~n)(t) - S (t))dt

1 I

Applying the Schwarz inequality we obtain

' "r I m -8-



n
(4.5) IPn(X) - S(x) 2 < (nl) - 2 T x - 2 1 MltuXlgo*.,XnX)2dt

1 I

f I (pnl(t) - Slnl(t)) 2dt .
I

Since

(ni)- 2 T-T (x - x 2 f M(t;Xl,**.xnX)2dt
1I

is certainly a continuous function of the variable x e I, it is also

bounded. Therefore there is a constant H2  such that (4.5) gives the

estimate

Ipm(x)- S(x)12  2 -s(n)(t}}2dt for x e I
I

Now the relation (3.1) completes our proof of (1.12).

5. Numerical examples. The explicit evaluation of the polynomial

Pm(x) is an elementary problem of linear algebra in m + I unknowns. This

is the reason why Theorem I is so welcome: It replaces for large m, the

construction of Pm(x) by the much simpler construction of S(x). We may say

that Theorem 1 adds to the interest that we attribute to the natural spline

interpolant S(x) - S2n_ 1(x).

The unicity of Pm(x) in Theorem I clearly implies that if the data

(1.1) are symmetric about the origin, i.e. b = -a, xi = -Xk -i+1, then

Pm(x) must be an even polynomial, hence P2r+1(x) = P2r(X).

For our examples we choose the simplest such symmetric case, namely

k - 3, (a,b) = (-1,1), xI = -1, x2 ' 0, x3 
= , y1  = 1, Y2 = 0, Y3 = 1

Selecting n = 1, and m = 3, 4, 5, 6, and 7, we find by elementary

calculations that

-9-



P3 (x) - X

P4 (x) ' P5 (x) - (18/11)x 2 _ (7/11)X4

P6 (x) - P7(I) - (25/11)X2 - (25/1x 4 + X

while the natural spline interpolant is the linear spline S(2c) I xI,

-1 < x < 1. The sequence of values

P3(12) .2, P(1/) -P 5(1/2) -. 37, P6(1/2) M P7(1/2) -. 44,

which converge to S(1/2) -. 5, illustrates Theorem 1.
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